Preliminary communication

ISOLATION AND REACTIONS OF 6-H₃N-6-CB₉H₁₁

T. JELINEK, B. ŠTIBR, J. PLEŠEK and S. HEŘMÁNEK

Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 250 68 Řež near Prague (Czechslovakia)

(Received February 10th, 1986)

Summary

An efficient route leading to the isolation of $nido-6-H_3N-6-CB_9H_{11}$ and its reactions leading to other $6-L-6-CB_9H_{11}$ species (L = H, Me₂C=NH or Me₂S) are reported along with the formation of $[2-L-1-C_5H_5-2, 1-CCOB_9H_9]$ (L = H₃N, H₂N⁻ or Me₂NH) *closo*-metallacarboranes. The structures are suggested on the basis of ¹H and ¹¹B NMR data.

The carborane nido-6-H₃N-6-CB₉H₁₁ is an important starting point for the synthesis of a relatively large number of ten and nine-vertex carbaboranes [1,2] including their metallacarborane analogues [1,3-5]. Surprisingly, the compound has not previously been isolated pure or characterized. We outline here a convenient and simple method for its isolation and present some preliminary results of a study of its reactions.

The 6-H₃N-6-CB₉H₁₁ species (I), (Fig. 1) is known to be formed along with 7-H₃N-7-CB₁₀H₁₂ (II) on treatment of the $[B_{10}H_{13}CN]^{2-}$ dianion with hydrochloric acid as a result of a degradation insertion of the carbon atom into the decaboron cage; the I/II ratio is typically in the range 1/4-1/2. The mixture is usually methylated in an alkaline medium [1, 2, 5] to give a mixture of the *N*-trimethyl derivatives, 6-Me₃N-6-CB₉H₁₁, (III) and 7-Me₃N-7-CB₁₀H₁₂, (IV), which can be separated by tedious chromatographic procedures. Thus compound I has not previously been isolated in a pure state.

In seeking an efficient procedure for obtaining pure I, we found that on treatment of the I/II mixture with acetone (Scheme 1) in the presence of hydrochloric acid compound I reacts more rapidly than II, to form the isopropylidene derivative, $6-Me_2C=NH-6-CB_9H_{11}$ (V), which, being insoluble in aqueous medium, can be readily separated from the unchanged II. In a series of experiments 35-40% yields of I (based on decaborane used) were attained after removal of the isopropylidene group in alkaline solution.

0022-328X/86/\$03.50 © 1986 Elsevier Sequoia S.A.

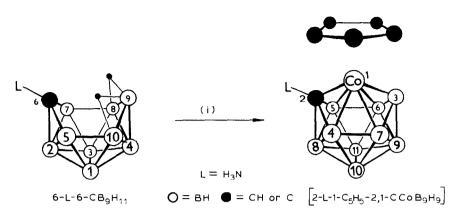
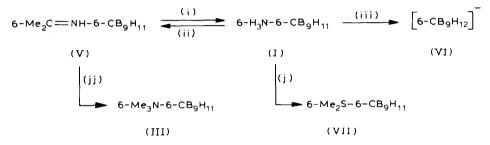



Fig. 1. Formation of the closo-[2-H₃N-1-C₅H₅-2,1-CCoB₉H₉] complex; (i) CoCl₂·6H₂O, cyclopentadiene, concentrated ethanolic KOH, 50°C (60% yield).

SCHEME 1. Monocarbaboranes from 6-Me₂C=NH-6-CB₉H₁₁; (i) heating with 5% KOH in vacuo, then diluted HCl (> 95% yield); (ii) acetone, diluted HCl, 25°C; (iii) Na/NH₃ (1), reflux, isolated after solvolysis as [NMe₄]⁺salt (81% yield); (j) NaNO₂, Me₂S, diluted HCl, 0°C (91% yield); (jj) Me₂SO₄, diluted KOH (> 95% yield).

Scheme 1 also depicts further reactions of V leading to other compounds of the ten-vertex *nido*-family of carboranes. The ¹H and ¹¹B NMR data of the compounds isolated (Table 1) agree well with the *nido*-6-L-6-CB₉H₁₁ structure [1]. Assignments of individual ¹¹B NMR signals were based on the recent two-dimensional ¹¹B—¹¹B NMR study [6] of the parent [6-CB₉H₁₂]⁻ anion (VI). The new, high-yield preparation of the anion VI and the isolation of the still uncharacterized $6-Me_2S-6-CB_9H_{11}$ (VII) derivative may be of interest.

Insertion of the Co(C₅H₅) unit into the cage of I gives rise to a blue complex whose elemental analysis and NMR data suggest the closo-[H₃N-1-C₅H₅-2,1-CCoB₉H₉] (VII) geometry (Fig. 1, Table 2). An identical product is obtained in 60% yield under the same conditions when the isopropylidene derivative V is used in place of I. Complex VIII behaves as a weak N-acid (pK_a 8.58 in 50% ethanol) in aqueous KOH to form the (2-H₂N-1-C₅H₅CCoB₉H₉]⁻ anion (IX), which was characterized as the tetramethylammonium salt. Complex VIII is isomeric with the red-brown closo-[2-Me₃N-5-C₅H₅-2,5-CCoB₉H₉] species [5] in which the bulk of the Me₃N and [C₅H₅]⁻ groups prevents the cobalt atom entering the favoured 1-position, as is the case of VIII. Methylation of VIII with an

TABLE 1

L	¹ H NMR <i>a</i>	¹¹ B NMR ^b					
		B(5,7)	B(9)	B(1,3)	B(8.10)	B(2)	B(4)
H	5.47(1H, CH _{skel.})	2.01	- 2.63	- 4.22	- 12.45	- 30.33	- 37.86
	— 3.71(2H, μH)	(137)	(152)	(128)	(143)	(147)	(141)
H ₃ N	8.33(3H, H ₃ N)	0.40	0.40	- 4.47	- 11.63	- 30.33	- 38.98
	- 3.44(2H, μH)	(137)		(137)	(145)	(154)	(146)
Me ₃ N	3.36(9H, Me)	- 1.11	1.88	- 5.31	- 11.53	- 29.32	- 37.49
	- 3.33(2H, μH)	(139)		(137)	(150/35)	(157)	(147)
Me ₂ S	3.01(3H, µH)	3.75	5.05	- 1.98	- 11.73	- 31.02	- 34.80
	$-3.25(1H, \mu H)$	(142)		(143)	(143)	(157)	(147)
Me ₂ CH=NH	2.60(3H, Me)	1.90	ca.2.10	- 3.75	- 11.33	- 29.05	- 37.49
	$-3.22(1H, \mu H)$	(141)		(137)	(151)	(156)	(147)

SIGNAL ASSIGNMENTS IN THE ¹H (200 MHz) AND ¹¹B (64.18 MHz) NMR SPECTRA OF 6-L-6-CB₉H₁₁ COMPOUNDS IN $(CD_9)_2$ CO

 $a \delta$ values in ppm, relative to internal TMS. $b \delta$ values in ppm relative to external BF₃•OEt₂, with positive values downfield; all the signals are doublets; values of J(B-H) (Hz) are given in parentheses.

TABLE 2

¹H (200 MHz) AND ¹¹B (64.18 MHz) NMR SPECTRA OF closo-[2-L-1-C₅H₅-2,1-CCoB₉H₉] COMPLEXES IN (CD₃)₂CO

L H _a N	¹ H NMR ^a 5.16(5H, C _s H _s)	¹¹ B NMR ^b				
		53.29(1B, ca.130) ^c	11.90(1B, 126)	-6.08(2B, 132)		
-		10.71(1B, 147)	- 21.11(2B, 137)	- 23.65(2B, 130)		
[H,N]	4.77(5H, C _s H _s)	46.14(1B, ca. 130)	8.78(1B, 133)	-4.76(1B, ca. 130)		
	3.42(12H, NMe_+)	-7.30(2B, 139)	- 22.48(2B)	- 26.23(2B, 133)		
Me ₂ NH	5.19(5H, C.H.)	53.14(1B) ^c	13.41(1B, 136)	-6.93(2B, 136)		
	3.54(6H, Me)	- 14.01(1B, 144)	- 22.82(4B)			

^a δ in ppm relative to internal TMS standard, all singlets. ^b δ in ppm relative to BF₃•OEt₂; all the signals are doublets; intensities and J(B—H) (in Hz) in parentheses. ^cBroad doublets.

excess of dimethyl sulphate gave the N-dimethyl derivative, $[2-Me_2NH-1-C_5H_5-2,1-CCOB_9H_9]$, (IX) as the highest methylated product, which reflects the steric hindrance between the $[C_5H_5]^-$ ligand and the 2-H₃N group in VIII.

We are presently attempting the isolation of other monocarbaborane derivatives arising from reactions of I and related species.

References

- 1 K. Base, B. Štibr, J. Dolanský and J. Duben, Collect. Czech. Chem. Commun., 46 (1981) 2345.
- 2 W.H. Knoth, Inorg. Chem., 10 (1971) 598.
- 3 B. Štibr, Z. Janoušek, K. Baše, J. Plešek, K.A. Solntsev, L.A. Butman, I.I. Kuznetsov and N.T. Kuznetsov, Collect. Czech. Chem. Commun., 49 (1984) 1660.
- 4 N.W. Alcock, J.G. Taylor and M.G.J. Wallbridge, J. Chem. Soc., Chem. Commun., (1983) 1168.
- 5 R.W. Schultz, J.G. Huffman and L.J. Todd, Inorg. Chem., 18 (1979) 2883.
- 6 S. Hermánek, J. Fusek, T. Jelínek, J. Plešek and B. Štibr, to be submitted for publication.